Projekteja vuodessa
Abstrakti
This paper presents a novel digital twin that can predict ship motions and fuel consumption in real operational conditions. The analysis is based on two optimal Deep Learning Models (DLM) namely (a) a transformer neural network used for the analysis of ship motions and (b) a Long Short-Term Memory (LSTM) network for the
prediction of ship fuel consumption. Comparisons of results against sea trial data suggest that subject to further testing and validation DLM could be used as part of a digital twin framework for safe and sustainable ship operations.
prediction of ship fuel consumption. Comparisons of results against sea trial data suggest that subject to further testing and validation DLM could be used as part of a digital twin framework for safe and sustainable ship operations.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 71 - 74 |
Sivumäärä | 5 |
Tila | Julkaistu - 20 lokak. 2023 |
OKM-julkaisutyyppi | Ei sovellu |
Tapahtuma | BUILding a DIgital Twin: requirements, methods, and applications - CNR Headquarters, Piazzale Aldo Moro, 7, 00185 , Rome, Italia Kesto: 19 lokak. 2023 → 20 lokak. 2023 http://inm.cnr.it/buildit2023/ |
Workshop
Workshop | BUILding a DIgital Twin |
---|---|
Lyhennettä | BUILD IT |
Maa/Alue | Italia |
Kaupunki | Rome |
Ajanjakso | 19/10/2023 → 20/10/2023 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'A ship digital twin for safe and sustainable ship operations'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Aktiivinen
-
RETROFIT55: Retrofit solutions to achieve 55% ghg reduction by 2030
Remes, H. (Vastuullinen tutkija)
01/01/2023 → 31/12/2025
Projekti: EU: Framework programmes funding