A ship digital twin for safe and sustainable ship operations

Mingyang Zhang, Spyros Hirdaris, Nikolaos Tsoulakos

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaAbstractScientificvertaisarvioitu

70 Lataukset (Pure)

Abstrakti

This paper presents a novel digital twin that can predict ship motions and fuel consumption in real operational conditions. The analysis is based on two optimal Deep Learning Models (DLM) namely (a) a transformer neural network used for the analysis of ship motions and (b) a Long Short-Term Memory (LSTM) network for the
prediction of ship fuel consumption. Comparisons of results against sea trial data suggest that subject to further testing and validation DLM could be used as part of a digital twin framework for safe and sustainable ship operations.
AlkuperäiskieliEnglanti
Sivut71 - 74
Sivumäärä5
TilaJulkaistu - 20 lokak. 2023
OKM-julkaisutyyppiEi sovellu
TapahtumaBUILding a DIgital Twin: requirements, methods, and applications - CNR Headquarters, Piazzale Aldo Moro, 7, 00185 , Rome, Italia
Kesto: 19 lokak. 202320 lokak. 2023
http://inm.cnr.it/buildit2023/

Workshop

WorkshopBUILding a DIgital Twin
LyhennettäBUILD IT
Maa/AlueItalia
KaupunkiRome
Ajanjakso19/10/202320/10/2023
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'A ship digital twin for safe and sustainable ship operations'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä