Projekteja vuodessa
Abstrakti
Many sequential decision-making problems need optimization of different objectives which possibly conflict with each other. The conventional way to deal with a multitask problem is to establish a scalar objective function based on a linear combination of different objectives. However, for the case where we have conflicting objectives with different scales, this method needs a trial-and-error approach to properly find proper weights for the combination. As such, in most cases, this approach cannot guarantee an optimal Pareto solution. In this paper, we develop a single-agent scale-independent multi-objective reinforcement learning on the basis of the Advantage Actor-Critic (A2C) algorithm. A convergence analysis is then done for the devised multi-objective algorithm providing a convergence-in-mean guarantee. We then perform some experiments over a multitask problem to evaluate the performance of the proposed algorithm. Simulation results show the superiority of developed multi-objective A2C approach against the single-objective algorithm.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2023 62nd IEEE Conference on Decision and Control (CDC) |
Kustantaja | IEEE |
Sivut | 1326-1333 |
Sivumäärä | 8 |
ISBN (painettu) | 979-8-3503-0125-0 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 15 jouluk. 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE Conference on Decision and Control - Marina Bay Sands, Singapore, Singapore Kesto: 13 jouluk. 2023 → 15 jouluk. 2023 Konferenssinumero: 62 https://cdc2023.ieeecss.org/ |
Julkaisusarja
Nimi | Proceedings of the IEEE Conference on Decision & Control |
---|---|
ISSN (elektroninen) | 2576-2370 |
Conference
Conference | IEEE Conference on Decision and Control |
---|---|
Lyhennettä | CDC |
Maa/Alue | Singapore |
Kaupunki | Singapore |
Ajanjakso | 13/12/2023 → 15/12/2023 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'A Scale-Independent Multi-Objective Reinforcement Learning with Convergence Analysis'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Aktiivinen
-
CRUISE /Di Francesco: A Cross-system Architecture Design for Autonomous Wireless Networks based on Lifelong Machine Learning
Di Francesco, M. (Vastuullinen tutkija), Amidzade, M. (Projektin jäsen) & Vaishnav, A. (Projektin jäsen)
01/01/2023 → 31/12/2025
Projekti: Academy of Finland: Other research funding