Abstrakti
We show that a deep learning model with built-in relational inductive bias can bring benefits to sample-efficient learning, without rely-ing on extensive data augmentation. The proposed one-shot classification model performs relational matching of a pair of inputs in the form of local and pairwise attention. Our approach solves perfectly the one-shot image classification Omniglot challenge. Our model exceeds human level accuracy, as well as the previous state of the art, with no data augmentation.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | ESANN 2021 proceedings |
Sivut | 647-652 |
ISBN (elektroninen) | 9782875870827 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2021 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning - Virtual, Online, Bruges, Belgia Kesto: 6 lokakuuta 2021 → 8 lokakuuta 2021 Konferenssinumero: 29 |
Conference
Conference | European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning |
---|---|
Lyhennettä | ESANN |
Maa/Alue | Belgia |
Kaupunki | Bruges |
Ajanjakso | 06/10/2021 → 08/10/2021 |