Projekteja vuodessa
Abstrakti
In this paper, we use the optimization formulation of nonlinear Kalman filtering and smoothing problems to develop second-order variants of iterated Kalman smoother (IKS) methods. We show that Newton's method corresponds to a recursion over affine smoothing problems on a modified state-space model augmented by a pseudo measurement. The first and second derivatives required in this approach can be efficiently computed with widely available automatic differentiation tools. Furthermore, we show how to incorporate line-search and trust-region strategies into the proposed second-order IKS algorithm in order to regularize updates between iterations. Finally, we provide numerical examples to demonstrate the method's efficiency in terms of runtime compared to its batch counterpart.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 31st European Signal Processing Conference, EUSIPCO 2023 - Proceedings |
Kustantaja | European Signal Processing Conference (EUSIPCO) |
Sivut | 1758-1762 |
Sivumäärä | 5 |
ISBN (elektroninen) | 978-9-4645-9360-0 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | European Signal Processing Conference - Helsinki, Suomi Kesto: 4 syysk. 2023 → 8 syysk. 2023 Konferenssinumero: 31 https://eusipco2023.org/ |
Julkaisusarja
Nimi | European Signal Processing Conference |
---|---|
ISSN (painettu) | 2219-5491 |
Conference
Conference | European Signal Processing Conference |
---|---|
Lyhennettä | EUSIPCO |
Maa/Alue | Suomi |
Kaupunki | Helsinki |
Ajanjakso | 04/09/2023 → 08/09/2023 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'A Recursive Newton Method for Smoothing in Nonlinear State Space Models'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
-: Finnish Center for Artificial Intelligence
01/01/2019 → 31/12/2022
Projekti: Academy of Finland: Other research funding