Abstrakti
We propose a data structure in d-dimensional hyperbolic space that can
be considered a natural counterpart to quadtrees in Euclidean spaces.
Based on this data structure we propose a so-called L-order for
hyperbolic point sets, which is an extension of the Z-order defined in
Euclidean spaces.
Using these quadtrees and the L-order we build geometric spanners.
Near-linear size (1+ε)-spanners do not exist in hyperbolic spaces, but
we create a Steiner spanner that achieves a spanning ratio of 1+ε with
O_{d,ε}(n) edges, using a simple construction that can be maintained
dynamically. As a corollary we also get a (2+ε)-spanner (in the
classical sense) of the same size, where the spanning ratio 2+ε is
almost optimal among spanners of subquadratic size.
Finally, we show that our Steiner spanner directly provides an elegant
solution to the approximate nearest neighbour problem: given a point set
P in d-dimensional hyperbolic space we build the data structure in
O_{d,ε}(nlog n) time, using O_{d,ε}(n) space. Then for any query point q
we can find a point p ∈ P that is at most 1+ε times farther from q than
its nearest neighbour in P in O_{d,ε}(log n) time. Moreover, the data
structure is dynamic and can handle point insertions and deletions with
update time O_{d,ε}(log n). This is the first dynamic nearest neighbour
data structure in hyperbolic space with proven efficiency guarantees.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 40th International Symposium on Computational Geometry (SoCG 2024) |
Toimittajat | Wolfgang Mulzer, Jeff M. Phillips |
Kustantaja | Schloss Dagstuhl - Leibniz-Zentrum für Informatik |
ISBN (elektroninen) | 978-3-95977-316-4 |
DOI - pysyväislinkit | |
Tila | Julkaistu - kesäk. 2024 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Symposium on Computational Geometry - Athens, Kreikka Kesto: 11 kesäk. 2024 → 14 kesäk. 2024 Konferenssinumero: 40 https://socg24.athenarc.gr/socg.html |
Julkaisusarja
Nimi | Leibniz International Proceedings in Informatics, LIPIcs |
---|---|
Vuosikerta | 293 |
ISSN (painettu) | 1868-8969 |
Conference
Conference | International Symposium on Computational Geometry |
---|---|
Lyhennettä | SoCG |
Maa/Alue | Kreikka |
Kaupunki | Athens |
Ajanjakso | 11/06/2024 → 14/06/2024 |
www-osoite |