A Predictive Semantic Inference System using BIM Collaboration Format (BCF) Cases and Machine Learning

Vincent Kuo, Jyrki Oraskari

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

Abstrakti

Building Information Modelling (BIM) has been hailed as an artefact of collaboration, where all project participants are able to create, modify and implement design/construction configurations within the same virtual environment codified by International Foundation Classes (IFC). To facilitate communication between human participants during project development, the BIM Collaboration Format (BCF) was developed, enabling users of BIM applications to communicate issues and refer those to specific objects. A single BCF entity holds a textual description of the issue, a status, links to a BIM IFC model and objects, a picture of the issue, and a camera orientation. Therefore, BCF poses a rich repository of complex fuzzy semantic knowledge concerning design risks, such as change requests and rework proposals, in a readily accessible format based in the XML schema. This research investigates how data in BCF files can be extracted, and processed using a linear algebra method known as singular value decomposition (SVD). SVD is extensively used, along with dimensionality reduction, for pattern recognition applications and has been shown to infer semantic correlations amidst a variety of different unstructured data (e.g. texts, images, signals etc.), comparable to that of human cognitive
associations. Consequently, a dynamic knowledge-base is established of past BCF cases, whereby designers can flexibly query and systematically retrieve most relevant past issues and related objects, given any known current parameter – reminiscent of how a human may recall past experiences upon inquiry or design review. This paper introduces the BCF structure, describes the machine learning steps taken to extract and process BCF data, and presents the conceptual
framework of a queryable knowledge-discovery system. This allows for relevant past issues to be recalled and the knowledge integrated in future designs as problem- and change-prediction. It is of particular pertinence for users of BIM, in sight of the ever-growing masses of BCF data generated from project to project.
AlkuperäiskieliEnglanti
OtsikkoWBC16 Proceedings : Volume III
AlaotsikkoBuilding Up Business Operations and Their Logic Shaping Materials and Technologies
ToimittajatArto Saari, Pekka Huovinen
KustantajaTampere University of Technology
Sivut368-381
Sivumäärä14
Vuosikerta3
ISBN (elektroninen)978-952-15-3743-1
TilaJulkaistu - 2016
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaCIB World Building Congress - Tampere Hall, Tampere, Suomi
Kesto: 30 toukokuuta 20163 kesäkuuta 2016
http://wbc16.com/

Julkaisusarja

NimiRaportti / Tampereen teknillinen yliopisto, rakennustekniikan laitos, rakennustuotanto ja -talous
KustantajaTampereen teknillinen yliopisto
Numero18
ISSN (painettu)1797-8904

Conference

ConferenceCIB World Building Congress
LyhennettäWBC
MaaSuomi
KaupunkiTampere
Ajanjakso30/05/201603/06/2016
www-osoite

Sormenjälki Sukella tutkimusaiheisiin 'A Predictive Semantic Inference System using BIM Collaboration Format (BCF) Cases and Machine Learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä