A Pipeline of 3D Scene Reconstruction from Point Clouds

Julkaisun otsikon käännös: Rakennetun ympäristön kolmiulotteinen mallintaminen pistepilvistä

Lingli Zhu

    Tutkimustuotos: Doctoral ThesisCollection of Articles

    Abstrakti

    3D-teknologiat ovat tulleet yhä suositummiksi niiden sovellusalojen lisääntyessä teollisuudessa, kuluttajatuotteissa, terveydenhuollossa, koulutuksessa ja hallinnossa. Ennusteiden mukaan 3D-mallinnus- ja -kartoitusmarkkinat kasvavat vuoden 2013 1,1 miljardista dollarista 7,7 miljardiin vuoteen 2018 mennessä. Erilaisia aineistoja käyttäviä 3D-mallinnustekniikoita tarvitaankin yhä enemmän. Tässä väitöskirjatutkimuksessa kehitettiin automaattisen pistepilviaineiston luokittelutekniikoita ja rekonstruoitiin 3D-ympäristöja (maanpintamalleja, rakennuksia ja tieverkkoja). Georeferoitujen binääristen kuvien prosessointitekniikoita kehitettiin useiden pilvipisteaineistojen luokitteluun. Työssä esitetään robusteja menetelmiä alkuperäisestä pistepilvestä 3D-malliin eri CityGML-standardin tarkkuustasoilla. Myös eri aineistolähteitä 3D-mallien rekonstruointiin tutkittiin. Eri aineistolähteiden käytön heikkoudet ja vahvuudet analysoitiin. Testiaineistona käytettiin liikkuvalla keilauksella (mobile laser scanning, MLS) ja ilmakeilauksella (airborne laser scanning, ALS) saatua laserkeilausaineistoja, miehittämättömillä lennokeilla (unmanned aerial vehicle, UAV) otettuja kuvia sekä Maanmittauslaitoksen avoimia aineistoja, kuten maastotietokantaa. Liikkuvalla laserkeilauksella kerätyn aineiston osalta tutkimuksessa käytettiin kolmella eri järjestelmällä saatua dataa, ja kolmen eri tarkkuustason (0,8, 8 ja 50 pistettä/m2) ilmalaserkeilausaineistoa. Tutkimuksessa saatuja tulosten laatua arvioitiin vertaamalla niitä referenssiaineistoon, jona käytettiin ortokuvia (GSD 20cm) ja nykyisissä ohjelmistoissa olevia mitattuja referenssipisteitä. 74,6 % rakennusten katoista saatiin rekonstruoitua automaattisella prosessilla. Rakennusmallien korkeuksien keskipoikkeama oli 15 cm. 6 %:lla mallin pisteistä oli yli yhden pikselin poikkeama laseraineiston pisteisiin verrattuna. 2,5 %:lla oli yli kahden pikselin poikkeama. Pikselikoko määriteltiin kahden laserpisteen välimatkan keskiarvona. Rekonstruoitujen teiden leveyden keskipoikkeama oli 22 cm ja korkeuden keskipoikkeama oli 14 cm. Tulokset osoittavat että 93,4 % rakennuksista saatiin luokiteltua oikein harvasta ilmalaserkeilausaineistosta ja 93,3 % sähköjohdoista saatiin havaittua kuudesta tiheästä metsäalueen ilmalaserkeilausaineistosta. Tutkimus demonstroi 3D-mallin konstruktion toimivuutta tarkkuustasoilla (LoD) 1-3 esitetyillä menetelmillä ja aineistoilla. Tulokset ovat hyödyllisiä kehitettäessä tulevaisuuden sovelluksia, kuten 3D-malleihin perustuvia navigointisovelluksia, topografisten 2D-karttojen ajantasaistamista 3D-kartoiksi, ja nopeaa suurten alueiden 3D-ympäristöjen rekonstruktiota.
    Julkaisun otsikon käännösRakennetun ympäristön kolmiulotteinen mallintaminen pistepilvistä
    AlkuperäiskieliEnglanti
    PätevyysTohtorintutkinto
    Myöntävä instituutio
    • Aalto-yliopisto
    Valvoja/neuvonantaja
    • Haggren, Henrik, Vastuuprofessori
    • Hyyppä, Juha, Ohjaaja
    Kustantaja
    Painoksen ISBN978-951-48-0246-1
    Sähköinen ISBN978-951-48-0247-8
    TilaJulkaistu - 2015
    OKM-julkaisutyyppiG5 Artikkeliväitöskirja

    Tutkimusalat

    • ilmalaserkeilaus
    • liikkuva laserkeilaus
    • maastotietokanta
    • rakennusten tunnistus
    • rakennusten rekonstruktio
    • tien tunnistus
    • tien rekonstruktio

    Sormenjälki

    Sukella tutkimusaiheisiin 'Rakennetun ympäristön kolmiulotteinen mallintaminen pistepilvistä'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä