A novel stochastic multistage dispatching model of hybrid battery-electric vehicle-supercapacitor storage system to minimize three-phase unbalance

Siyu Zhou, Yang Han*, Amr S. Zalhaf, Matti Lehtonen, Mohamed M.F. Darwish, Karar Mahmoud

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

5 Sitaatiot (Scopus)

Abstrakti

The unbalanced load distribution, the single-phase connection of renewable energy, and the uncoordinated charging of electric vehicles (EVs) will bring a severe issue corresponding to the three-phase unbalance in modern distribution networks. To deal with this issue, a novel multistage optimal dispatching model with the hybrid energy storage system (HESS), consisting of the battery energy storage system (BESS), EV, and supercapacitor (SC), is proposed in this paper. The first stage is conducted on the day-ahead stage, driven by minimizing the total operation cost and relieving power unbalance, the unbalanced penalty cost is introduced into the optimal dispatching model with the electricity purchasing cost and the degradation cost of HESS. Also, the chance-constraint stochastic programming (SP) model with the coordinated operation of HESS is accommodated to handle the diverse uncertainties of renewable energy, load demand, and EV users’ behaviors. In the intra-day operation stage, a rolling optimization-based dispatch model is formulated to re-optimize the operation of the SC for the rapid response of mitigating the real-time three-phase unbalance caused by renewable energy. The numerical experiments are executed on the IEEE 34-bus three-phase test system. Compared with the cases without considering SC and the degradation cost of HESS, the power unbalance in the proposed model is reduced by 3.27% and 3.62% per day at the real-time stage, respectively, while total operation cost is reduced by 46.77 US$ and 350.62 US$ per day, respectively. The results validated that the proposed model is efficient in reducing the three-phase unbalance under multi-time scales, improving the economic operation of the distribution network.

AlkuperäiskieliEnglanti
Artikkeli131174
JulkaisuEnergy
Vuosikerta296
DOI - pysyväislinkit
TilaJulkaistu - 1 kesäk. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'A novel stochastic multistage dispatching model of hybrid battery-electric vehicle-supercapacitor storage system to minimize three-phase unbalance'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä