Abstrakti
We propose a nonparametric spatio-temporal stochastic differential equation (SDE) model that can learn the underlying dynamics of arbitrary continuous-time systems without prior knowledge. We augment the input space of the drift function of an SDE with a temporal component to account for spatio-temporal patterns. The experiments on a real world data set demonstrate that the spatio-temporal model is better able to fit the data than the spatial model and also reduce the forecasting error.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | NIPS 2018 Spatiotemporal Workshop |
Alaotsikko | 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada |
Kustantaja | Neural Information Processing Systems Foundation |
Sivut | 1-5 |
Tila | Julkaistu - 2018 |
OKM-julkaisutyyppi | D3 Artikkeli ammatillisessa konferenssijulkaisussa |
Tapahtuma | NIPS Spatiotemporal Workshop - Montreal, Kanada Kesto: 3 jouluk. 2018 → 8 jouluk. 2018 |
Workshop
Workshop | NIPS Spatiotemporal Workshop |
---|---|
Maa/Alue | Kanada |
Kaupunki | Montreal |
Ajanjakso | 03/12/2018 → 08/12/2018 |