A new class of composite objective multistep estimating sequence techniques

Endrit Dosti, Sergiy A. Vorobyov*, Themistoklis Charalambous

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

99 Lataukset (Pure)

Abstrakti

A plethora of problems arising in signal processing, machine learning and statistics can be cast as large-scale optimization problems with a composite objective structure. Such problems are typically solved by utilizing iterative first-order algorithms. In this work, we devise a new accelerated gradient-based estimating sequence technique for solving large-scale optimization problems with composite objective structure. Specifically, we introduce a new class of estimating functions, which are obtained by utilizing both a tight lower bound on the objective function, as well as the gradient mapping technique. Then, using the proposed estimating functions, we construct a class of Composite Objective Multi-step Estimating-sequence Techniques (COMET), which are endowed with an efficient line-search procedure. We prove that our proposed COMET enjoys the accelerated convergence rate, and our newly established convergence results allow for step-size adaptation. Our theoretical findings are supported by extensive computational experiments on various problem types and real-world datasets. Moreover, our numerical results show evidence of the robustness of the proposed method to the imperfect knowledge of the smoothness and strong convexity parameters.

AlkuperäiskieliEnglanti
Artikkeli108889
Sivumäärä14
JulkaisuSignal Processing
Vuosikerta206
Varhainen verkossa julkaisun päivämäärä16 jouluk. 2022
DOI - pysyväislinkit
TilaJulkaistu - toukok. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'A new class of composite objective multistep estimating sequence techniques'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä