A new accelerated gradient-based estimating sequence technique for solving large-scale optimization problems with composite structure

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Various problems arising in control and data analysis can be formulated as large-scale convex optimization problems with a composite objective structure. Within the black-box optimization framework, such problems are typically solved by using accelerated first-order methods. The celebrated examples of such methods are the Fast Gradient Method and the Accelerated Multistep Gradient Method, designed by using the estimating sequences framework. In this work, we present a new class of estimating sequences, which are constructed by making use of a tighter lower bound on the objective function together with the gradient mapping technique. Based on the newly introduced estimating sequences, we construct a new method, which is also equipped with an efficient line-search strategy that provides robustness to the imperfect knowledge of the Lipschitz constant. Our proposed method enjoys the accelerated convergence rate, and our theoretical results are corroborated by numerical experiments conducted on real-world datasets. The experimental results also demonstrate the robustness of the initialization of the proposed method to the imperfect knowledge of the strong convexity parameter of the objective function.
AlkuperäiskieliEnglanti
Otsikko2022 IEEE 61st Conference on Decision and Control (CDC)
KustantajaIEEE
Sivut7516-7521
Sivumäärä6
ISBN (elektroninen)978-1-6654-6761-2
DOI - pysyväislinkit
TilaJulkaistu - 10 tammik. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Conference on Decision and Control - Cancun, Mexico, Cancun, Meksiko
Kesto: 6 jouluk. 20229 jouluk. 2022
Konferenssinumero: 61

Julkaisusarja

NimiProceedings of the IEEE Conference on Decision & Control
ISSN (elektroninen)2576-2370

Conference

ConferenceIEEE Conference on Decision and Control
LyhennettäCDC
Maa/AlueMeksiko
KaupunkiCancun
Ajanjakso06/12/202209/12/2022

Sormenjälki

Sukella tutkimusaiheisiin 'A new accelerated gradient-based estimating sequence technique for solving large-scale optimization problems with composite structure'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä