Abstrakti
The Johnson-Lindenstrauss family of transforms constitutes a key algorithmic tool for reducing the dimensionality of a Euclidean space with low distortion of distances. Rephrased from geometry to linear algebra, one seeks to reduce the dimension of a vector space while approximately preserving inner products. We present a multilinear generalization of this bilinear (inner product) setting that admits both an elementary randomized algorithm as well as a short proof of correctness using Orlicz quasinorms.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 8th SIAM Symposium on Simplicity of Algorithms, SOSA 2025 |
Toimittajat | Ioana-Oriana Bercea, Rasmus Pagh |
Kustantaja | Society for Industrial and Applied Mathematics |
Sivut | 108-118 |
ISBN (elektroninen) | 978-1-61197-831-5 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2025 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Symposium on Simplicity in Algorithms - New Orleans, Yhdysvallat Kesto: 13 tammik. 2025 → 15 tammik. 2025 Konferenssinumero: 8 |
Conference
Conference | Symposium on Simplicity in Algorithms |
---|---|
Lyhennettä | SOSA |
Maa/Alue | Yhdysvallat |
Kaupunki | New Orleans |
Ajanjakso | 13/01/2025 → 15/01/2025 |