A Multi-Task Bayesian Deep Neural Net for Detecting Life-Threatening Infant Incidents From Head Images

Tzu-Jui Julius Wang, Jorma Laaksonen, Yi-Ping Liao, Bo-Zong Wu, Shih-Yun Shen

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

251 Lataukset (Pure)

Abstrakti

The notorious incident of sudden infant death syndrome (SIDS) can easily happen to a newborn due to many environmental factors. To prevent such tragic incidents from happening, we propose a multi-task deep learning framework that detects different facial traits and two life-threatening indicators, i.e. which facial parts are occluded or covered, by analyzing the infant head image. Furthermore, we extend and adapt the recently developed models that capture data-dependent uncertainty from noisy observations for our application. The experimental results show significant improvements on YunInfants dataset across most of the tasks over the models that simply adopt the regular cross-entropy losses without addressing the effect of the underlying uncertainties.
AlkuperäiskieliEnglanti
Otsikko2019 IEEE International Conference on Image Processing, ICIP 2019 - Proceedings
KustantajaIEEE
Sivut3006-3010
Sivumäärä5
ISBN (elektroninen)9781538662496
DOI - pysyväislinkit
TilaJulkaistu - 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Image Processing - Taipei, Taiwan
Kesto: 22 syysk. 201925 syysk. 2019
Konferenssinumero: 26

Conference

ConferenceIEEE International Conference on Image Processing
LyhennettäICIP
Maa/AlueTaiwan
KaupunkiTaipei
Ajanjakso22/09/201925/09/2019

Sormenjälki

Sukella tutkimusaiheisiin 'A Multi-Task Bayesian Deep Neural Net for Detecting Life-Threatening Infant Incidents From Head Images'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä