A Methodology for Generating a Digital Twin for Process Industry: A Case Study of a Fiber Processing Pilot Plant

Mohammad Azangoo*, Lotta Sorsamaki, Seppo A. Sierla, Teemu Matasniemi, Miia Rantala, Kari Rainio, Valeriy Vyatkin

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

10 Sitaatiot (Scopus)
165 Lataukset (Pure)

Abstrakti

Digital twins are now one of the top trends in Industry 4.0, and many companies are using them to increase their level of digitalization, and, as a result, their productivity and reliability. However, the development of digital twins is difficult, expensive, and time consuming. This article proposes a semi-automated methodology to generate digital twins for process plants by extracting process data from engineering documents using text and image processing techniques. The extracted information is used to build an intermediate graph model, which serves as a starting point for generating a model in a simulation software. The translation of a graph-based model into a simulation software environment necessitates the use of simulator-specific mapping rules. This paper describes an approach for generating a digital twin based on a steady state simulation model, using a Piping and Instrumentation Diagram (P&ID) as the main source of information. The steady state modeling paradigm is especially suitable for use cases involving retrofits for an operational process plant, also known as a brownfield plant. A methodology and toolchain is proposed, consisting of manual, semi-automated and fully automated steps. A pilot scale brownfield fiber processing plant was used as a case study to demonstrate our proposed methodology and toolchain, and to identify and address issues that may not occur in laboratory scale case studies. The article concludes with an evaluation of unresolved concerns and future research topics for the automated development of a digital twin for a brownfield process system.

AlkuperäiskieliEnglanti
Sivut58787-58810
Sivumäärä24
JulkaisuIEEE Access
Vuosikerta10
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'A Methodology for Generating a Digital Twin for Process Industry: A Case Study of a Fiber Processing Pilot Plant'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • SEED: SEED

    Sierla, S. (Vastuullinen tutkija) & Azangoo, M. (Projektin jäsen)

    01/09/201928/02/2022

    Projekti: Business Finland: Other research funding

Siteeraa tätä