A Meta-Bayesian Approach for Rapid Online Parametric Optimization for Wrist-based Interactions

Yi-Chi Liao, Ruta Desai, Alex M. Pierce, Krista E. Taylor, Hrvoje Benko, Tanya R. Jonker, Aakar Gupta

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

44 Lataukset (Pure)

Abstrakti

Wrist-based input often requires tuning parameter settings in correspondence to between-user and between-session differences, such as variations in hand anatomy, wearing position, posture, etc. Traditionally, users either work with predefined parameter values not optimized for individuals or undergo time-consuming calibration processes. We propose an online Bayesian Optimization (BO)-based method for rapidly determining the user-specific optimal settings of wrist-based pointing. Specifically, we develop a meta-Bayesian optimization (meta-BO) method, differing from traditional human-in-the-loop BO: By incorporating meta-learning of prior optimization data from a user population with BO, meta-BO enables rapid calibration of parameters for new users with a handful of trials. We evaluate our method with two representative and distinct wrist-based interactions: absolute and relative pointing. On a weighted-sum metric that consists of completion time, aiming error, and trajectory quality, meta-BO improves absolute pointing performance by 22.92% and 21.35% compared to BO and manual calibration, and improves relative pointing performance by 25.43% and 13.60%.
AlkuperäiskieliEnglanti
OtsikkoCHI '24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems
ToimittajatFlorian Floyd Mueller, Penny Kyburz, Julie R. Williamson, Corina Sas, Max L. Wilson, Phoebe Toups Dugas, Irina Shklovski
KustantajaACM
Sivumäärä38
ISBN (elektroninen)979-8-4007-0330-0
DOI - pysyväislinkit
TilaJulkaistu - 11 toukok. 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaACM SIGCHI Annual Conference on Human Factors in Computing Systems - Honolulu, USA, Honolulu, Yhdysvallat
Kesto: 11 toukok. 202416 toukok. 2024
https://chi2024.acm.org/

Conference

ConferenceACM SIGCHI Annual Conference on Human Factors in Computing Systems
LyhennettäACM CHI
Maa/AlueYhdysvallat
KaupunkiHonolulu
Ajanjakso11/05/202416/05/2024
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'A Meta-Bayesian Approach for Rapid Online Parametric Optimization for Wrist-based Interactions'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä