A machine learning method for the evaluation of hydrodynamic performance of floating breakwaters in waves

Hassan Saghi, Spyros Hirdaris, Tommi Mikkola

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

10 Sitaatiot (Scopus)
199 Lataukset (Pure)

Abstrakti

This paper presents a two-dimensional simulation model for the idealisation of moored rectangular and trapezoidal floating breakwaters (FB) motions in regular and irregular waves. Fast-Fictitious Domain and Volume of Fluid methods are coupled to track-free surface effects and predict FB motions. Hydrodynamic performance is assessed by a machine learning method based on Cuckoo Search–Least Square Support Vector Machine model (CS–LSSVM). Results confirm that a suitable combination of the aspect ratio of an FB and her sidewall mooring angle could help attenuate incoming waves to a minimum height. It is concluded that moored trapezoidal FBs are more efficient than traditional rectangular designs and subject to further validation CS–LSSVM can be useful in terms of optimising the values of predicted wave transmission coefficients.
AlkuperäiskieliEnglanti
Sivut1447-1461
Sivumäärä15
JulkaisuShips and Offshore Structures
Vuosikerta17
Numero7
Varhainen verkossa julkaisun päivämäärä29 toukok. 2021
DOI - pysyväislinkit
TilaJulkaistu - 3 heinäk. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'A machine learning method for the evaluation of hydrodynamic performance of floating breakwaters in waves'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä