Abstrakti
This paper presents a low-rank tensor model for vehicular traffic volume data. Contrarily to previous works, we capitalize on a definition of rank, called the tensor train, that is as effective as possible; so that it exploits all the correlation between local structures that are present in the multiple modes, but practical enough that efficient optimization algorithms still hold. From our model, a formulation to find balanced (higher-order) tensors is derived. The resulting optimally-balanced tensor improves the imputation accuracy of the tensor train rank. Then, we design specific experiments which are numerically evaluated using real-world traffic data from Tampere city, Finland. The experimental results are promising, our proposed approach outperforms existing algorithms in both imputation accuracy and, in some instances, computation time.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 8934 - 8938 |
Sivumäärä | 6 |
Julkaisu | IEEE Transactions on Vehicular Technology |
Vuosikerta | 67 |
Numero | 9 |
Varhainen verkossa julkaisun päivämäärä | 29 kesäkuuta 2018 |
DOI - pysyväislinkit | |
Tila | Julkaistu - syyskuuta 2018 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |