A Latent Feature Model Approach to Biclustering

José Caldas, Samuel Kaski

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

Biclustering is the unsupervised learning task of mining a data matrix for useful submatrices, for instance groups of genes that are co-expressed under particular biological conditions. As these submatrices are expected to partly overlap, a significant challenge in biclustering is to develop methods that are able to detect overlapping biclusters. The authors propose a probabilistic mixture modelling framework for biclustering biological data that lends itself to various data types and allows biclusters to overlap. Their framework is akin to the latent feature and mixture-of-experts model families, with inference and parameter estimation being performed via a variational expectation-maximization algorithm. The model compares favorably with competing approaches, both in a binary DNA copy number variation data set and in a miRNA expression data set, indicating that it may potentially be used as a general-problem solving tool in biclustering.
AlkuperäiskieliEnglanti
JulkaisuInternational Journal of Knowledge Discovery in Bioinformatics
Vuosikerta6
Numero2
DOI - pysyväislinkit
TilaJulkaistu - 2016
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'A Latent Feature Model Approach to Biclustering'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä