A Hybrid Evolutionary-Based MPPT for Photovoltaic Systems Under Partial Shading Conditions

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

  • Mansi Joisher
  • Dharampal Singh
  • Shamsodin Taheri
  • Diego R. Espinoza-Trejo
  • Edris Pouresmaeil
  • Hamed Taheri

Organisaatiot

  • National Institute of Technology Karnataka
  • Punjab Engineering College
  • Université du Québec en Outaouais
  • Universidad Autonoma de San Luis Potosi
  • GE Current

Kuvaus

Under partial shading conditions (PSCs), photovoltaic (PV) system characteristics vary and may have multiple power peaks. Conventional maximum power point tracking (MPPT) methods are unable to track the global peak. In addition, it takes a considerable time to reach the maximum power point (MPP). To address these issues, this paper proposes an improved hybrid MPPT method using the conventional evolutional algorithms, i.e., Particle Swarm Optimization (PSO) and Differential Evaluation (DE). The main feature of the proposed hybrid MPPT method is the advantage of one method compensates for shortcomings of the other method. Furthermore, the algorithm is simple and rapid. It can be easily implemented on a low-cost microcontroller. To evaluate the performance of the proposed method, MATLAB simulations are carried out under different PSCc. Experimental verifications are conducted using a boost converter setup, an ET-M53695 panel and a TMS320F28335 DSP. Finally, the simulation and hardware results are compared to those from the PSO and DE methods. The superiority of the hybrid method over PSO and DE methods is highlighted through the results.

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli9006783
Sivut38481-38492
Sivumäärä12
JulkaisuIEEE Access
Vuosikerta8
TilaJulkaistu - 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Lataa tilasto

Ei tietoja saatavilla

ID: 41337800