A Hilbert manifold structure on the Weil–Petersson class Teichmüller space of bordered Riemann surfaces

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

Organisaatiot

  • University of Manitoba
  • Uppsala University
  • American University of Sharjah

Kuvaus

We consider bordered Riemann surfaces which are biholomorphic to compact Riemann surfaces of genus g with n regions biholomorphic to the disk removed. We define a refined Teichmüller space of such Riemann surfaces (which we refer to as the WP-class Teichmüller space) and demonstrate that in the case that 2g + 2 - n > 0, this refined Teichmüller space is a Hilbert manifold. The inclusion map from the refined Teichmüller space into the usual Teichmüller space (which is a Banach manifold) is holomorphic. We also show that the rigged moduli space of Riemann surfaces with non-overlapping holomorphic maps, appearing in conformal field theory, is a complex Hilbert manifold. This result requires an analytic reformulation of the moduli space, by enlarging the set of non-overlapping mappings to a class of maps intermediate between analytically extendible maps and quasiconformally extendible maps. Finally, we show that the rigged moduli space is the quotient of the refined Teichmüller space by a properly discontinuous group of biholomorphisms.

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivumäärä42
JulkaisuCommunications in Contemporary Mathematics
Vuosikerta17
Numero04
TilaJulkaistu - elokuuta 2015
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 6931392