A gradient flow formulation for the stochastic Amari neural field model

Christian Kuehn, Jonas M. Tölle

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

We study stochastic Amari-type neural field equations, which are mean-field models for neural activity in the cortex. We prove that under certain assumptions on the coupling kernel, the neural field model can be viewed as a gradient flow in a nonlocal Hilbert space. This makes all gradient flow methods available for the analysis, which could previously not be used, as it was not known, whether a rigorous gradient flow formulation exists. We show that the equation is well-posed in the nonlocal Hilbert space in the sense that solutions starting in this space also remain in it for all times and space-time regularity results hold for the case of spatially correlated noise. Uniqueness of invariant measures, ergodic properties for the associated Feller semigroups, and several examples of kernels are also discussed.
AlkuperäiskieliEnglanti
Sivut1227-1252
Sivumäärä26
JulkaisuJournal of Mathematical Biology
Vuosikerta79
Numero4
DOI - pysyväislinkit
TilaJulkaistu - 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'A gradient flow formulation for the stochastic Amari neural field model'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä