A geometrically nonlinear Euler–Bernoulli beam model within strain gradient elasticity with isogeometric analysis and lattice structure applications

Loc V. Tran*, Jarkko Niiranen

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

29 Sitaatiot (Scopus)
129 Lataukset (Pure)

Abstrakti

The nonlinear governing differential equation and variational formulation of the Euler–Bernoulli beam model are formulated within Mindlin’s strain gradient elasticity theory of form II by adopting the von Kármán strain assumption. The formulation can retrieve some simplified beam models of generalized elasticity such as the models of simplified strain gradient theory (SSGT), modified strain gradient theory (MSGT), and modified couple stress theory (MCST). Without the presence of nonlinear terms, the resulting linear differential equation is solvable by analytical means, whereas the mathematical complexity of the nonlinear problem is treated with the Newton–Raphson iteration and a conforming isogeometric Galerkin method with Cp-1-continuous B-spline basis functions of order p ≥ 3. Through a set of numerical examples, the accuracy and validity of the present theoretical formulation at linear and nonlinear regimes are confirmed. Finally, an application to lattice frame structures illustrates the benefits of the present beam model in saving computational costs, while maintaining high accuracy as compared to standard 2D finite element simulations.

AlkuperäiskieliEnglanti
Sivut345-371
Sivumäärä27
JulkaisuMathematics and Mechanics of Complex Systems
Vuosikerta8
Numero4
DOI - pysyväislinkit
TilaJulkaistu - 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'A geometrically nonlinear Euler–Bernoulli beam model within strain gradient elasticity with isogeometric analysis and lattice structure applications'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä