A general-purpose machine learning Pt interatomic potential for an accurate description of bulk, surfaces, and nanoparticles

Jan Kloppenburg, Livia B. Pártay, Hannes Jónsson, Miguel A. Caro

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

9 Sitaatiot (Scopus)
104 Lataukset (Pure)

Abstrakti

A Gaussian approximation machine learning interatomic potential for platinum is presented. It has been trained on density-functional theory (DFT) data computed for bulk, surfaces, and nanostructured platinum, in particular nanoparticles. Across the range of tested properties, which include bulk elasticity, surface energetics, and nanoparticle stability, this potential shows excellent transferability and agreement with DFT, providing state-of-the-art accuracy at a low computational cost. We showcase the possibilities for modeling of Pt systems enabled by this potential with two examples: the pressure-temperature phase diagram of Pt calculated using nested sampling and a study of the spontaneous crystallization of a large Pt nanoparticle based on classical dynamics simulations over several nanoseconds.

AlkuperäiskieliEnglanti
Artikkeli134704
Sivumäärä9
JulkaisuThe Journal of chemical physics
Vuosikerta158
Numero13
DOI - pysyväislinkit
TilaJulkaistu - 7 huhtik. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'A general-purpose machine learning Pt interatomic potential for an accurate description of bulk, surfaces, and nanoparticles'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä