A General Method for Calibrating Stochastic Radio Channel Models with Kernels

Ayush Bharti, Francois Xavier Briol, Troels Pedersen

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

4 Sitaatiot (Scopus)
51 Lataukset (Pure)

Abstrakti

Calibrating stochastic radio channel models to new measurement data is challenging when the likelihood function is intractable. The standard approach to this problem involves sophisticated algorithms for extraction and clustering of multipath components, following which, point estimates of the model parameters can be obtained using specialized estimators. We propose a likelihood-free calibration method using approximate Bayesian computation. The method is based on the maximum mean discrepancy, which is a notion of distance between probability distributions. Our method not only by-passes the need to implement any high-resolution or clustering algorithm, but is also automatic in that it does not require any additional input or manual pre-processing from the user. It also has the advantage of returning an entire posterior distribution on the value of the parameters, rather than a simple point estimate. We evaluate the performance of the proposed method by fitting two different stochastic channel models, namely the Saleh-Valenzuela model and the propagation graph model, to both simulated and measured data. The proposed method is able to estimate the parameters of both the models accurately in simulations, as well as when applied to 60 GHz indoor measurement data.

AlkuperäiskieliEnglanti
Sivut3986-4001
Sivumäärä16
JulkaisuIEEE Transactions on Antennas and Propagation
Vuosikerta70
Numero6
DOI - pysyväislinkit
TilaJulkaistu - kesäk. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'A General Method for Calibrating Stochastic Radio Channel Models with Kernels'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä