Abstrakti
We present a novel Bayesian reinforcement learning algorithm that addresses model bias and exploration overhead issues. The algorithm combines different aspects of several state-of-the-art reinforcement learning methods that use Gaussian Processes model-based approaches to increase the use of the online data samples. The algorithm uses a smooth reward function requiring the reward value to be derived from the environment state. It works with continuous states and actions in a coherent way with a minimized need for expert knowledge in parameter tuning. We analyse and discuss the practical benefits of the selected approach in comparison to more traditional methodological choices, and illustrate the use of the algorithm in a motor control problem involving a two-link simulated arm.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Artificial Neural Networks and Machine Learning, ICANN 2014 - 24th International Conference on Artificial Neural Networks, Proceedings |
Kustantaja | Springer |
Sivut | 371-378 |
Sivumäärä | 8 |
Vuosikerta | 8681 LNCS |
ISBN (painettu) | 9783319111780 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2014 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Artificial Neural Networks - Hamburg, Saksa Kesto: 15 syysk. 2014 → 19 syysk. 2014 Konferenssinumero: 24 |
Julkaisusarja
Nimi | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Vuosikerta | 8681 LNCS |
ISSN (painettu) | 03029743 |
ISSN (elektroninen) | 16113349 |
Conference
Conference | International Conference on Artificial Neural Networks |
---|---|
Lyhennettä | ICANN |
Maa/Alue | Saksa |
Kaupunki | Hamburg |
Ajanjakso | 15/09/2014 → 19/09/2014 |