A deep learning method for the prediction of focused waves in a wave flume

Mingyang Zhang, Sasan Tavakoli, Spyros Hirdaris

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

36 Lataukset (Pure)

Abstrakti

Rogue waves pose a significant risk to marine safety, emphasizing the need to
accurately predict their occurrence in the open ocean. However, the complexity of their evolution, which may involve nonlinear physical phenomena such as wave-wave interaction and modulation instability, makes this task challenging. Currently the reconstruction of rogue waves involves generating focused waves through the superposition of different spectral components of irregular waves that are in phase at the focusing point. Despite its effectiveness, this approach
is limited. The paper introduces a deep learning method based on Long short-term memory (LSTM) to predict focused waves generated in a Computational Fluid Dynamics (CFD) flume in the time domain. The model is trained on 60% of the generated wave time series, with the remaining 40% used for both validation and testing. The results demonstrate that the proposed method can assist with the prediction of focused waves at various observation points, indicating its potential as a promising approach for predicting rogue wave behaviour in the ocean.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 12th International Workshop on Ship and Marine Hydrodynamics
ToimittajatSpyros Hirdaris, Decheng Wan
KustantajaInstitute of Physics Publishing
Sivumäärä11
Vuosikerta1288
DOI - pysyväislinkit
TilaJulkaistu - 9 elok. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Workshop on Ship and Marine Hydrodynamics - Aalto University, Espoo, Suomi
Kesto: 28 elok. 20231 syysk. 2023
Konferenssinumero: 12

Julkaisusarja

NimiIOP Conference Series: Materials Science and Engineering
KustantajaInstitute of Physics
Vuosikerta1288
ISSN (elektroninen)1757-899X

Workshop

WorkshopInternational Workshop on Ship and Marine Hydrodynamics
LyhennettäIWSH
Maa/AlueSuomi
KaupunkiEspoo
Ajanjakso28/08/202301/09/2023

Sormenjälki

Sukella tutkimusaiheisiin 'A deep learning method for the prediction of focused waves in a wave flume'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä