A deep learning method for the prediction of 6-DoF ship motions in real conditions

Mingyang Zhang, Ghalib Taimuri, Jinfen Zhang, Spyros Hirdaris

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

44 Sitaatiot (Scopus)
413 Lataukset (Pure)

Abstrakti

This paper presents a deep learning method for the prediction of ship motions in 6 Degrees of Freedom (DoF). Big data streams of Automatic Identification System (AIS), now-cast, and bathymetry records are used to extract motion trajectories and idealise environmental conditions. A rapid Fluid-Structure Interaction (FSI) model is used to generate ship motions that account for the influence of surrounding water and ship-controlling devices. A transformer neural network that accounts for the influence of operational conditions on ship dynamics is validated by learning the data streams corresponding to ship voyages and hydro-meteorological conditions between two ports in the Gulf of Finland. Predictions for a ship turning circle and motion dynamics between these two ports show that the proposed method can capture the influence of operational conditions on seakeeping and manoeuvring.
AlkuperäiskieliEnglanti
Sivut887-905
Sivumäärä19
JulkaisuProceedings of the Institution of Mechanical Engineers. Part M: Journal of Engineering for the Maritime Environment
Vuosikerta237
Numero4
Varhainen verkossa julkaisun päivämäärä11 maalisk. 2023
DOI - pysyväislinkit
TilaJulkaistu - marrask. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'A deep learning method for the prediction of 6-DoF ship motions in real conditions'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • FLARE: FLooding Accident REsponse

    Hirdaris, S. (Vastuullinen tutkija), Zhang, M. (Projektin jäsen) & Matusiak, J. (Projektin jäsen)

    31/05/201930/11/2022

    Projekti: EU: Framework programmes funding

Siteeraa tätä