Projekteja vuodessa
Abstrakti
This paper presents a deep learning method for the prediction of ship motions in 6 Degrees of Freedom (DoF). Big data streams of Automatic Identification System (AIS), now-cast, and bathymetry records are used to extract motion trajectories and idealise environmental conditions. A rapid Fluid-Structure Interaction (FSI) model is used to generate ship motions that account for the influence of surrounding water and ship-controlling devices. A transformer neural network that accounts for the influence of operational conditions on ship dynamics is validated by learning the data streams corresponding to ship voyages and hydro-meteorological conditions between two ports in the Gulf of Finland. Predictions for a ship turning circle and motion dynamics between these two ports show that the proposed method can capture the influence of operational conditions on seakeeping and manoeuvring.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 887-905 |
Sivumäärä | 19 |
Julkaisu | Proceedings of the Institution of Mechanical Engineers. Part M: Journal of Engineering for the Maritime Environment |
Vuosikerta | 237 |
Numero | 4 |
Varhainen verkossa julkaisun päivämäärä | 11 maalisk. 2023 |
DOI - pysyväislinkit | |
Tila | Julkaistu - marrask. 2023 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'A deep learning method for the prediction of 6-DoF ship motions in real conditions'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
FLARE: FLooding Accident REsponse
Hirdaris, S. (Vastuullinen tutkija), Zhang, M. (Projektin jäsen) & Matusiak, J. (Projektin jäsen)
31/05/2019 → 30/11/2022
Projekti: EU: Framework programmes funding