A data mining-then-predict method for proactive maritime traffic management by machine learning

Zhao Liu, Wanli Chen, Cong Liu*, Ran Yan, Mingyang Zhang*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

6 Sitaatiot (Scopus)
42 Lataukset (Pure)

Abstrakti

Proactive traffic management is increasingly critical in maritime intelligent transportation systems. Central to this is maritime traffic forecasting, which leverages specific structures and properties of the problem. This study focuses on the traffic dynamics within convergent areas of inland waterways and proposes a method based on data mining followed by prediction using Automatic Identification System (AIS) data. This approach addresses uncertainties in ship voyage destinations and optimizes predictions for temporary stops in inland waterways. AIS data is processed to depict complete ship motion trajectories, grouping them into trajectory sets based on shared origin, destination, and route. These groups help represent maritime traffic patterns using the entrance and exit points of channels and the boundaries of the study area. Additionally, a stop detection model is applied to these trajectories to identify nodes within maritime traffic networks. A decision tree algorithm is then employed to train a classifier for predicting traffic patterns. The method was validated in the convergent area of the Yangtze River and the Hanjiang River, demonstrating effective pattern extraction from inland maritime traffic and high accuracy in predicting single ship trajectories, achieving a 96.7% accuracy rate and 80.9% precision. The findings suggest that the proposed method (1) effectively extracts and predicts traffic patterns, (2) identifies congestion in convergent waters, and (3) supports traffic management strategies.

AlkuperäiskieliEnglanti
Artikkeli108696
Sivumäärä26
JulkaisuEngineering Applications of Artificial Intelligence
Vuosikerta135
DOI - pysyväislinkit
TilaJulkaistu - syysk. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'A data mining-then-predict method for proactive maritime traffic management by machine learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä