Projekteja vuodessa
Abstrakti
Despite the widespread use of deep learning models for super-resolution image enhancement, their use for hyper-spectral imagery has not yet been researched thoroughly. This study reviews a number of recent hyperspectral image super-resolution techniques and explores also other single-image super-resolution methods. Our work targets to forestry images, highlighting the main methodologies, contributions, advantages, and limitations of the studied methods. The state-of-the-art methods are categorized into three distinct groups, those based on the Convolutional Neural Network (CNN), the Transformer, and the Generative Adversarial Network (GAN). Subsequently, the selected methods are compared in terms of six different performance measures on an airborne hyperspectral image dataset of a boreal forest. Our findings conclude that Transformer-based methods consistently outperform other current hyperspectral super-resolution techniques, while the GAN approach is the most promising one among the studied non-hyperspectral models.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Proceedings |
Kustantaja | IEEE |
Sivut | 1226-1230 |
Sivumäärä | 5 |
ISBN (elektroninen) | 979-8-3503-6032-5 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2024 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Geoscience and Remote Sensing Symposium - School of Rural, Surveying and Geoinformatics Engineering National Technical University of Athens Zografou Campus | Lambadarios Building, Athens, Kreikka Kesto: 7 heinäk. 2024 → 12 heinäk. 2024 https://www.2024.ieeeigarss.org/summerschool_program.php |
Julkaisusarja
Nimi | IEEE International Geoscience and Remote Sensing Symposium proceedings |
---|---|
ISSN (elektroninen) | 2153-7003 |
Conference
Conference | IEEE International Geoscience and Remote Sensing Symposium |
---|---|
Lyhennettä | IGARSS |
Maa/Alue | Kreikka |
Kaupunki | Athens |
Ajanjakso | 07/07/2024 → 12/07/2024 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'A Comparison of Hyperspectral Super-Resolution Techniques for Boreal Forest Imagery'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Aktiivinen
-
ARTISDIG/ Laaksonen: Artificial Intelligence for Twinning the Diversity, Productivity and Spectral Signature of Forests
Laaksonen, J. (Vastuullinen tutkija), Muhammad, U. (Projektin jäsen), Mäyrä, V. (Projektin jäsen) & Guiotte, F. (Projektin jäsen)
EU The Recovery and Resilience Facility (RRF)
01/01/2022 → 31/12/2024
Projekti: Academy of Finland: Other research funding