A Comparison of Hyperspectral Super-Resolution Techniques for Boreal Forest Imagery

Yuvrajsinh Chudasama, Usman Muhammad, Ville Mayra, Florent Guiotte, Jorma Laaksonen*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

15 Lataukset (Pure)

Abstrakti

Despite the widespread use of deep learning models for super-resolution image enhancement, their use for hyper-spectral imagery has not yet been researched thoroughly. This study reviews a number of recent hyperspectral image super-resolution techniques and explores also other single-image super-resolution methods. Our work targets to forestry images, highlighting the main methodologies, contributions, advantages, and limitations of the studied methods. The state-of-the-art methods are categorized into three distinct groups, those based on the Convolutional Neural Network (CNN), the Transformer, and the Generative Adversarial Network (GAN). Subsequently, the selected methods are compared in terms of six different performance measures on an airborne hyperspectral image dataset of a boreal forest. Our findings conclude that Transformer-based methods consistently outperform other current hyperspectral super-resolution techniques, while the GAN approach is the most promising one among the studied non-hyperspectral models.

AlkuperäiskieliEnglanti
OtsikkoIGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
KustantajaIEEE
Sivut1226-1230
Sivumäärä5
ISBN (elektroninen)979-8-3503-6032-5
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Geoscience and Remote Sensing Symposium - School of Rural, Surveying and Geoinformatics Engineering National Technical University of Athens Zografou Campus | Lambadarios Building, Athens, Kreikka
Kesto: 7 heinäk. 202412 heinäk. 2024
https://www.2024.ieeeigarss.org/summerschool_program.php

Julkaisusarja

NimiIEEE International Geoscience and Remote Sensing Symposium proceedings
ISSN (elektroninen)2153-7003

Conference

ConferenceIEEE International Geoscience and Remote Sensing Symposium
LyhennettäIGARSS
Maa/AlueKreikka
KaupunkiAthens
Ajanjakso07/07/202412/07/2024
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'A Comparison of Hyperspectral Super-Resolution Techniques for Boreal Forest Imagery'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä