A Cloud-Based Decision Support System for Self-Healing in Distributed Automation Systems Using Fault Tree Analysis

Wenbin Dai*, Laurynas Riliskis, Peng Wang, Valeriy Vyatkin, Xinping Guan

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

34 Sitaatiot (Scopus)
344 Lataukset (Pure)

Abstrakti

Downtime is a key performance index for industrial automation systems. An industrial automation system achieves maximum productivity when its downtime is reduced to the minimum. One approach to minimize downtime is to predict system faults and recover from them automatically. A cloud-based decision support system is proposed for rapid problem identifications and to assist the self-management processes. By running multiple parallel simulations of control software with real-time inputs ahead of system time, faults could be detected and corrected automatically using autonomous industrial software agents. Fault trees, as well as control algorithms, are modeled using IEC 61499 function blocks that can be directly executed on both physical controllers and cloud services. A case study of water heating process is used to demonstrate the self-healing process supported by the cloud-based decision support system.

AlkuperäiskieliEnglanti
Sivut989-1000
Sivumäärä12
JulkaisuIEEE Transactions on Industrial Informatics
Vuosikerta14
Numero3
DOI - pysyväislinkit
TilaJulkaistu - maalisk. 2018
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'A Cloud-Based Decision Support System for Self-Healing in Distributed Automation Systems Using Fault Tree Analysis'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä