A category theoretical interpretation of discretization in Galerkin finite element method

Valtteri Lahtinen*, Antti Stenvall

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

The Galerkin finite element method (FEM) is used widely in finding approximative solutions to field problems in engineering and natural sciences. When utilizing FEM, the field problem is said to be discretized. In this paper, we interpret discretization in FEM through category theory, unifying the concept of discreteness in FEM with that of discreteness in other fields of mathematics, such as topology. This reveals structural properties encoded in this concept: we propose that discretization is a dagger mono with a discrete domain in the category of Hilbert spaces made concrete over the category of vector spaces. Moreover, we discuss parallel decomposability of discretization, and through examples, connect it to different FEM formulations and choices of basis functions.

AlkuperäiskieliEnglanti
JulkaisuMATHEMATISCHE ZEITSCHRIFT
DOI - pysyväislinkit
TilaSähköinen julkaisu (e-pub) ennen painettua julkistusta - 1 tammikuuta 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'A category theoretical interpretation of discretization in Galerkin finite element method'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Siteeraa tätä