3D Object Detection Algorithm Based on the Reconstruction of Sparse Point Clouds in the Viewing Frustum

Xing Xu, Xiang Wu, Yun Zhao*, Xiaoshu Lü, Aki Aapaoja

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

76 Lataukset (Pure)

Abstrakti

In response to the problem that the detection precision of the current 3D object detection algorithm is low when the object is severely occluded, this study proposes an object detection algorithm based on the reconstruction of sparse point clouds in the viewing frustum. The algorithm obtains more local feature information of the sparse point clouds in the viewing frustum through dimensional expansion, performs the fusion of local and global feature information of the point cloud data to obtain point cloud data with more complete semantic information, and then applies the obtained data to the 3D object detection task. The experimental results show that the precision of object detection in both 3D view and BEV (Bird's Eye View) can be improved effectively through the algorithm, especially object detection of moderate and hard levels when the object is severely occluded. In the 3D view, the average precision of the 3D detection of cars, pedestrians, and cyclists at a moderate level can be increased by 7.1p.p., 16.39p.p., and 5.42p.p., respectively; in BEV, the average precision of the 3D detection of car, pedestrians, and cyclists at hard level can be increased by 6.51p.p., 16.57p.p., and 7.18p.p., respectively, thus indicating the effectiveness of the algorithm.

AlkuperäiskieliEnglanti
Artikkeli1611097
Sivumäärä9
JulkaisuMOBILE INFORMATION SYSTEMS
Vuosikerta2022
DOI - pysyväislinkit
TilaJulkaistu - 15 lokak. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin '3D Object Detection Algorithm Based on the Reconstruction of Sparse Point Clouds in the Viewing Frustum'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä