3D Head Motion Detection Using Millimeter-Wave Doppler Radar

Muneeba Raja*, Zahra Vali, Sameera Palipana, David G. Michelson, Stephan Sigg

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)
40 Lataukset (Pure)

Abstrakti

In advanced driver assistance systems to conditional automation systems, monitoring of driver state is vital for predicting the driver's capacity to supervise or maneuver the vehicle in cases of unexpected road events and to facilitate better in-car services. The paper presents a technique that exploits millimeter-wave Doppler radar for 3D head tracking. Identifying the bistatic and monostatic geometry for antennas to detect rotational vs. translational movements, the authors propose the biscattering angle for computing a distinctive feature set to isolate dynamic movements via class memberships. Through data reduction and joint time-frequency analysis, movement boundaries are marked for creation of a simplified, uncorrelated, and highly separable feature set. The authors report movement-prediction accuracy of 92%. This non-invasive and simplified head tracking has the potential to enhance monitoring of driver state in autonomous vehicles and aid intelligent car assistants in guaranteeing seamless and safe journeys.

AlkuperäiskieliEnglanti
Artikkeli8998250
Sivut32321-32331
Sivumäärä11
JulkaisuIEEE Access
Vuosikerta8
DOI - pysyväislinkit
TilaJulkaistu - 1 tammikuuta 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin '3D Head Motion Detection Using Millimeter-Wave Doppler Radar'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Siteeraa tätä