Valokuva Vikas Garg
  • Puhelin+358 50 4639449
20092024

Tutkimustuotoksia vuodessa

Henkilökohtainen profiili

Tutkimusalue

My research interests span both theoretical and applied aspects of Quantum Computing & Artificial Intelligence (AI)/Machine Learning (ML)/Deep Learning (DL). Current focus is on applications of quantum methods & AI/ML/DL in Computational Biology and Healthcare (with an emphasis on protein and drug design), Material Synthesis,  Cybersecurity, Energy, E-commerce, Wireless systems, Blockchain technologies,  Energy, Internet of Things (IoT), Computer Vision, and Natural Language Processing.     

Some ongoing projects include theory and applications of deep learning and quantum AI, human-assisted drug discovery, generative models, graphical models, and learning under uncertainty or resource constraints along with their intersections with optimization and game theory. Select recent publications can be found at: https://www.mit.edu/~vgarg/

We collaborate widely with academic and industrial experts. In the last few years, I've worked closely with several amazing researchers:

List of collaborators

Tommi Jaakkola: PhD supervisor (MIT)
Cynthia Rudin: SM supervisor (now at Duke University)
Raquel Urtasun:  MS supervisor (now at University of Toronto/Waabi)
Regina Barzilay and Stefanie Jegelka (MIT)
Adam Kalai and David Alvarez-Melis (Microsoft Research New England)
Steven Wu (CMU)
Katrina Ligett (Hebrew University and Caltech)
John Ingraham (now at Generate Biomedicines)
Inderjit Dhillon and Hsiang-Fu Yu (Amazon Research)
Lin Xiao (now at Facebook AI Research)
Ofer Dekel (Microsoft Research Redmond) 
Sukrit Shankar and Roberto Cipolla (University of Cambridge)
Risi Kondor (University of Chicago)
John Lafferty (now at Yale)

I'm also Co-Founder and Chief Scientist at YaiYai Oy, a company that provides cutting-edge quantum and AI/ML/DL solutions to startups, governments, and corporate powerhouses across the globe in multiple sectors including Biopharma, Retail, Manufacturing & Automation, IoT, Energy, FinTech, and Gaming.

Tutkimustyön johtaminen

Two decades of experience in research, teaching, engineering, product development, and supply chain management including stints at leading academic institutes, business schools, and companies such as Amazon Search (A9), Microsoft Research, and IBM Research. Also, Energy Fellow at MIT as well as an active research member of the Machine Learning for Pharmaceutical Discovery and Synthesis Symposium  (https://mlpds.mit.edu/) 

Some recent innovations have led to advances in diverse domains such as protein design,  multi-attribute visual search, fast inference on IoT devices such as smartphones, query recommendation and auto-completion for e-commerce platforms, drug discovery, strategic decision making in multi-agent systems, global supply chain dynamics, and design of smart grids and next generation wireless systems.

 

Multiple patents and publications at premier venues in AI, ML, NLP, Computer Vision, Automation, Energy, etc. (e.g., NeurIPS, ICML, CVPR, AISTATS, UAI, AAAI, IJCAI, TKDE, CIKM, e-Energy, and SmartGridComm).

Asiantuntemus YK:n kestävän kehityksen tavoitteista

Vuonna 2015 YK:n jäsenvaltiot sopivat 17 maailmanlaajuisesta kestävän kehityksen tavoitteesta köyhyyden poistamiseksi, planeetan suojelemiseksi ja vaurauden takaamiseksi kaikille. Tämän henkilön työ edistää seuraavia kestävän kehityksen tavoitteita:

  • SDG 3 – Hyvä terveys ja hyvinvointi
  • SDG 7 – Edullinen ja puhdas energia
  • SDG 9 – Teollisuus, innovaatiot ja infrastruktuuri
  • SDG 11 – Kestävät kaupungit ja yhteisöt
  • SDG 13 – Ilmastotoimet

Koulutus / tieteellinen pätevyys

Graduate Research Assistant, MIT CSAIL, Massachusetts Institute of Technology (MIT)

Asemat yliopiston ulkopuolella

Chief Scientist and Co-Founder, YaiYai Oy

Sormenjälki

Sukella tutkimusaiheisiin, joissa Vikas Garg on aktiivinen. Nämä aihemerkinnät ovat peräisin tämän henkilön teoksista. Yhdessä ne muodostavat ainutlaatuisen sormenjäljen.
  • 1 Samanlaiset profiilit

Yhteistyöt ja huippututkimusalueet viimeisiltä viideltä vuodelta

Viimeisin maa-/aluetasolla toteutettu yhteistyö. Saat tarkempia lisätietoja pisteitä napauttamalla, tai