Projects per year
Abstract
Light is a powerful and sustainable resource, but it can be detrimental to the performance and longevity of optical devices. Materials with near-zero light reflectance, i.e. superblack materials, are sought to improve the performance of several light-centered technologies. Here we report a simple top-down strategy, guided by computational methods, to develop robust superblack materials following metal-free wood delignification and carbonization (1500 °C). Subwavelength severed cells evolve under shrinkage stresses, yielding vertically aligned carbon microfiber arrays with a thickness of ~100 µm and light reflectance as low as 0.36% and independent of the incidence angle. The formation of such structures is rationalized based on delignification method, lignin content, carbonization temperature and wood density. Moreover, our measurements indicate a laser beam reflectivity lower than commercial light stoppers in current use. Overall, the wood-based superblack material is introduced as a mechanically robust surrogate for microfabricated carbon nanotube arrays.
Original language | English |
---|---|
Article number | 7875 |
Number of pages | 12 |
Journal | Nature Communications |
Volume | 14 |
Issue number | 1 |
DOIs | |
Publication status | Published - 5 Dec 2023 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Structural properties
- Sustainability
- Synthesis and processing
Fingerprint
Dive into the research topics of 'Wood-based superblack'. Together they form a unique fingerprint.-
FinnCERES: Competence Center for the Materials Bioeconomy: A Flagship for our Sustainable Future
01/05/2022 → 30/06/2026
Project: Academy of Finland: Other research funding
-
-: FinnCERES - Competence Centre for the Materials Bioeconomy: A Flagship for our Sustainable Future
Dufau Mattos, B., Zhao, B. & Vlasova, M.
01/05/2022 → 31/12/2022
Project: Academy of Finland: Other research funding
-
BioELCell: Bioproducts Engineered from Lignocelluloses: from plants and upcycling to next generation materials
Rojas Gaona, O., Abidnejad, R., Ajdary, R., Bhattarai, M., Zhu, Y., Zhao, B., Robertson, D., Reyes Torres, G., Johansson, L., Garcia Greca, L., Klockars, K., Kämäräinen, T., Majoinen, J., Tardy, B., Dufau Mattos, B. & Ressouche, E.
30/07/2018 → 31/07/2023
Project: EU: ERC grants