Wideband superconducting nanotube electrometer

Pasi Häkkinen, Aurélien Fay, Dmitry Golubev, Pasi Lähteenmäki, Pertti Hakonen

Research output: Contribution to journalArticleScientificpeer-review

303 Downloads (Pure)

Abstract

We have investigated the microwave response of nanotube Josephson junctions at 600–900 MHz at microwave powers corresponding to currents from 0 to 2 × I C in the junction. Compared with theoretical modeling, the response of the junctions corresponds well to the lumped element model of resistively and capacitively shunted junction. We demonstrate the operation of these superconducting FETs as charge detectors at high frequencies without any matching circuits. Gate-voltage-induced charge Q G modifies the critical current I C, which changes the effective impedance of the junction under microwave irradiation. This change, dependent on the transfer characteristics dI C/dQ G, modifies the reflected signal and it can be used for wide band electrometry. We measure a sensitivity of 3.1×10−5 e/Hz√ from a sample which has a maximum switching current of 2.6 nA.
Original languageEnglish
Article number012601
Pages (from-to)1-4
Number of pages4
JournalApplied Physics Letters
Volume107
Issue number1
DOIs
Publication statusPublished - 2015
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Wideband superconducting nanotube electrometer'. Together they form a unique fingerprint.

Cite this