Water and Blood Repellent Flexible Tubes

Sasha Hoshian*, Esko Kankuri, Robin H.A. Ras, Sami Franssila, Ville Jokinen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

37 Citations (Scopus)
163 Downloads (Pure)

Abstract

A top-down scalable method to produce flexible water and blood repellent tubes is introduced. The method is based on replication of overhanging nanostructures from an aluminum tube template to polydimethylsiloxane (PDMS) via atomic layer deposition (ALD) assisted sacrificial etching. The nanostructured PDMS/titania tubes are superhydrophobic with water contact angles 163 ± 1° (advancing) and 157 ± 1° (receding) without any further coating. Droplets are able to slide through a 4 mm (inner diameter) tube with low sliding angles of less than 10° for a 35 μL droplet. The superhydrophobic tube shows up to 5,000 times increase in acceleration of a sliding droplet compared to a control tube depending on the inclination angle. Compared to a free falling droplet, the superhydrophobic tube reduced the acceleration by only 38.55%, as compared to a 99.99% reduction for a control tube. The superhydrophobic tubes are blood repellent. Blood droplets (35 μL) roll through the tubes at 15° sliding angles without leaving a bloodstain. The tube surface is resistant to adhesion of activated platelets unlike planar control titania and smooth PDMS surfaces.

Original languageEnglish
Article number16019
Pages (from-to)1-8
JournalScientific Reports
Volume7
Issue number1
DOIs
Publication statusPublished - 1 Dec 2017
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Water and Blood Repellent Flexible Tubes'. Together they form a unique fingerprint.

Cite this