TY - JOUR
T1 - Viewing high entropy alloys through glasses: Linkages between solid solution and glass phases in multicomponent alloys
AU - Alvarez-Donado, R.
AU - Papanikolaou, S.
AU - Esfandiarpour, A.
AU - Alava, M. J.
N1 - Funding Information:
This research was funded by the European Union Horizon 2020 research and innovation program under Grant Agreement No. 857470 and from the European Regional Development Fund via the Foundation for Polish Science International Research Agenda PLUS program Grant No. MAB PLUS/2018/8. We acknowledge the computational resources provided by the High-Performance Cluster at the National Centre for Nuclear Research in Poland.
| openaire: EC/H2020/857470/EU//NOMATEN
PY - 2023/2
Y1 - 2023/2
N2 - High entropy alloys (HEAs) represent highly promising multicomponent crystals that form concentrated solid solutions (CSSs) and may violate traditional thermodynamic rules of mixing, ultimately leading to excellent physical properties. For a deeper understanding, we investigate seven CSSs, including Co-Cr-Ni-Fe-Mn elements, at experimentally relevant compositions and conditions, through molecular simulations, and we use 1-1 comparisons to corresponding glass state characteristics, attained through rapid cooling protocols. We determine the behavior of various structural features, including the configurational entropy for a set of CSSs in their crystalline and vitreous states numerically. We employ swap Monte Carlo (MC) simulations, in combination with the reversible scaling method, to efficiently compute the configurational entropy (Sconf), and show that the entropic rule of mixing is not always adequate for predicting alloy formation. We study the stability and formability of crystalline solid solutions, as well as glasses, while following the thermodynamics of Sconf. An apparent entropic similarity between CSSs and corresponding glasses leads us to use a Kauzmann-like ansatz, relating the CSSs at Sconf→0 with the emergence of a CSS order-disorder transition, at temperature TOD. In the context of glasses, a comparison between kinetic and thermodynamic fragilities allows the association of sluggish diffusion onset to a drop in Sconf at TK. Analogously, we classify CSSs as "strong"or "fragile"in the sense of their ability to migrate across CSS crystal configurations at high temperatures, distinguishing its formability. We argue that the magnitude of TOD may be an excellent predictor of CSS single-phase stability, which appears to scale with well-known HEA predictors, in particular we notice that VEC and TOD have in relation to the others a significantly large Pearson correlation coefficient, much larger than most other observables (except ΔHmix).
AB - High entropy alloys (HEAs) represent highly promising multicomponent crystals that form concentrated solid solutions (CSSs) and may violate traditional thermodynamic rules of mixing, ultimately leading to excellent physical properties. For a deeper understanding, we investigate seven CSSs, including Co-Cr-Ni-Fe-Mn elements, at experimentally relevant compositions and conditions, through molecular simulations, and we use 1-1 comparisons to corresponding glass state characteristics, attained through rapid cooling protocols. We determine the behavior of various structural features, including the configurational entropy for a set of CSSs in their crystalline and vitreous states numerically. We employ swap Monte Carlo (MC) simulations, in combination with the reversible scaling method, to efficiently compute the configurational entropy (Sconf), and show that the entropic rule of mixing is not always adequate for predicting alloy formation. We study the stability and formability of crystalline solid solutions, as well as glasses, while following the thermodynamics of Sconf. An apparent entropic similarity between CSSs and corresponding glasses leads us to use a Kauzmann-like ansatz, relating the CSSs at Sconf→0 with the emergence of a CSS order-disorder transition, at temperature TOD. In the context of glasses, a comparison between kinetic and thermodynamic fragilities allows the association of sluggish diffusion onset to a drop in Sconf at TK. Analogously, we classify CSSs as "strong"or "fragile"in the sense of their ability to migrate across CSS crystal configurations at high temperatures, distinguishing its formability. We argue that the magnitude of TOD may be an excellent predictor of CSS single-phase stability, which appears to scale with well-known HEA predictors, in particular we notice that VEC and TOD have in relation to the others a significantly large Pearson correlation coefficient, much larger than most other observables (except ΔHmix).
UR - http://www.scopus.com/inward/record.url?scp=85149677174&partnerID=8YFLogxK
U2 - 10.1103/PhysRevMaterials.7.025603
DO - 10.1103/PhysRevMaterials.7.025603
M3 - Article
AN - SCOPUS:85149677174
SN - 2475-9953
VL - 7
SP - 1
EP - 9
JO - Physical Review Materials
JF - Physical Review Materials
IS - 2
M1 - 025603
ER -