Unmodified and multi-walled carbon nanotube modified tetrahedral amorphous carbon (ta-C) films as in vivo sensor materials for sensitive and selective detection of dopamine

Research output: Contribution to journalArticleScientificpeer-review

Researchers

Research units

  • University of Oulu

Abstract

Unmodified and multi-walled carbon nanotube (MWCNT) modified tetrahedral amorphous carbon (ta-C) films of 15 and 50 nm were investigated as potential in vivo sensor materials for the detection of dopamine (DA) in the presence of the main interferents, ascorbic acid (AA) and uric acid (UA). The MWCNTs were grown directly on ta-C by chemical vapor deposition (designated as ta-C+CNT) and were characterized with X-ray photoelectron spectroscopy, Raman spectroscopy, scanning and transmission electron microscopy. Electroanalytical sensitivity and selectivity were determined with cyclic voltammetry. Biocompatibility of the materials was assessed with cell cultures of mouse neural stem cells (mNSCs). The detection limits of DA for both ta-C and ta-C+CNT electrodes ranged from 40 to 85 nM, which are well within the required range for in vivo detection. The detection limits were lower for both ta-C and ta-C+CNT electrodes with 50 nm of ta-C compared to 15 nm. The ta-C electrodes showed a large dynamic linear range of 0.01–100 µM but could not resolve between the oxidation peaks of DA, AA and UA. Modification with MWCNTs, however, resulted in excellent selectivity and all three analytes could be detected simultaneously at physiologically relevant concentrations using cyclic voltammetry. Based on cell culture of mNSCs, both ta-C and ta-C+CNT exhibited good biocompatibility, demonstrating their potential as in vivo sensor materials for the detection of DA.

Details

Original languageEnglish
Pages (from-to)23-30
Number of pages8
JournalBiosensors and Bioelectronics
Volume118
Publication statusPublished - 30 Oct 2018
MoE publication typeA1 Journal article-refereed

    Research areas

  • Ascorbic acid, Biocompatibility, Cyclic voltammetry, Dopamine, Multi-walled carbon nanotubes, Tetrahedral amorphous carbon

ID: 26960482