Universal relations in ultracold polarized Fermi gases

Research output: ThesisDoctoral ThesisCollection of Articles

Standard

Universal relations in ultracold polarized Fermi gases. / Doggen, Elmer V. H.

Aalto University, 2015. 160 p.

Research output: ThesisDoctoral ThesisCollection of Articles

Harvard

Doggen, EVH 2015, 'Universal relations in ultracold polarized Fermi gases', Doctor's degree, Aalto University.

APA

Doggen, E. V. H. (2015). Universal relations in ultracold polarized Fermi gases. Aalto University.

Vancouver

Doggen EVH. Universal relations in ultracold polarized Fermi gases. Aalto University, 2015. 160 p. (Aalto University publication series DOCTORAL DISSERTATIONS; 72).

Author

Doggen, Elmer V. H.. / Universal relations in ultracold polarized Fermi gases. Aalto University, 2015. 160 p.

Bibtex - Download

@phdthesis{2704ab1c993d4dadaa9caa3cfba000d4,
title = "Universal relations in ultracold polarized Fermi gases",
abstract = "Ultracold quantum gases are an ideal toolbox for simulating complex condensed or nuclear matter systems and to investigate fundamental quantum properties of matter. In this thesis, we will investigate universal properties connecting the high-momentum tail of the momentum distribution, the short-range correlations and the thermodynamics, encapsulated in Tan's relations. These relations are especially useful in the strongly interacting case, where perturbative approaches usually fail. With the aid of Tan's universal relations, we can still come to general conclusions about strongly interacting quantum gases. In particular, the momentum distribution exhibits a characteristic algebraic decay, unlike the exponential decay of the non-interacting case. The main focus in this thesis is on the one-dimensional, fermionic case, where we study the highly polarized case (the one-dimensional Fermi polaron), verifying Tan's relations using a variety of theoretical tools. In addition, we show that localized systems exhibit a universal, dynamical instability to delocalization when a short-range interaction between particles is switched off rapidly. This delocalization process relies on the algebraic decay of the momentum distribution, which guarantees that at least some of the delocalized single-particle states are occupied with a finite probability. Finally, we investigate the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensation (BEC) crossover for the three-dimensional Fermi gas and develop a novel method to describe the breakdown of the Fermi liquid description in the vicinity of the critical temperature for superfluidity, in good agreement with a recent experiment.",
keywords = "ultracold atoms, quantum gases, one-dimensional systems, Tan relations, Fermi polaron, quench dynamics, disordered systems, localization properties, BCS/BEC crossover, Brueckner-Goldstone theory, ultracold atoms, quantum gases, one-dimensional systems, Tan relations, Fermi polaron, quench dynamics, disordered systems, localization properties, BCS/BEC crossover, Brueckner-Goldstone theory",
author = "Doggen, {Elmer V. H.}",
year = "2015",
language = "English",
isbn = "978-952-60-6215-0",
series = "Aalto University publication series DOCTORAL DISSERTATIONS",
publisher = "Aalto University",
number = "72",
school = "Aalto University",

}

RIS - Download

TY - THES

T1 - Universal relations in ultracold polarized Fermi gases

AU - Doggen, Elmer V. H.

PY - 2015

Y1 - 2015

N2 - Ultracold quantum gases are an ideal toolbox for simulating complex condensed or nuclear matter systems and to investigate fundamental quantum properties of matter. In this thesis, we will investigate universal properties connecting the high-momentum tail of the momentum distribution, the short-range correlations and the thermodynamics, encapsulated in Tan's relations. These relations are especially useful in the strongly interacting case, where perturbative approaches usually fail. With the aid of Tan's universal relations, we can still come to general conclusions about strongly interacting quantum gases. In particular, the momentum distribution exhibits a characteristic algebraic decay, unlike the exponential decay of the non-interacting case. The main focus in this thesis is on the one-dimensional, fermionic case, where we study the highly polarized case (the one-dimensional Fermi polaron), verifying Tan's relations using a variety of theoretical tools. In addition, we show that localized systems exhibit a universal, dynamical instability to delocalization when a short-range interaction between particles is switched off rapidly. This delocalization process relies on the algebraic decay of the momentum distribution, which guarantees that at least some of the delocalized single-particle states are occupied with a finite probability. Finally, we investigate the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensation (BEC) crossover for the three-dimensional Fermi gas and develop a novel method to describe the breakdown of the Fermi liquid description in the vicinity of the critical temperature for superfluidity, in good agreement with a recent experiment.

AB - Ultracold quantum gases are an ideal toolbox for simulating complex condensed or nuclear matter systems and to investigate fundamental quantum properties of matter. In this thesis, we will investigate universal properties connecting the high-momentum tail of the momentum distribution, the short-range correlations and the thermodynamics, encapsulated in Tan's relations. These relations are especially useful in the strongly interacting case, where perturbative approaches usually fail. With the aid of Tan's universal relations, we can still come to general conclusions about strongly interacting quantum gases. In particular, the momentum distribution exhibits a characteristic algebraic decay, unlike the exponential decay of the non-interacting case. The main focus in this thesis is on the one-dimensional, fermionic case, where we study the highly polarized case (the one-dimensional Fermi polaron), verifying Tan's relations using a variety of theoretical tools. In addition, we show that localized systems exhibit a universal, dynamical instability to delocalization when a short-range interaction between particles is switched off rapidly. This delocalization process relies on the algebraic decay of the momentum distribution, which guarantees that at least some of the delocalized single-particle states are occupied with a finite probability. Finally, we investigate the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensation (BEC) crossover for the three-dimensional Fermi gas and develop a novel method to describe the breakdown of the Fermi liquid description in the vicinity of the critical temperature for superfluidity, in good agreement with a recent experiment.

KW - ultracold atoms

KW - quantum gases

KW - one-dimensional systems

KW - Tan relations

KW - Fermi polaron

KW - quench dynamics

KW - disordered systems

KW - localization properties

KW - BCS/BEC crossover

KW - Brueckner-Goldstone theory

KW - ultracold atoms

KW - quantum gases

KW - one-dimensional systems

KW - Tan relations

KW - Fermi polaron

KW - quench dynamics

KW - disordered systems

KW - localization properties

KW - BCS/BEC crossover

KW - Brueckner-Goldstone theory

M3 - Doctoral Thesis

SN - 978-952-60-6215-0

T3 - Aalto University publication series DOCTORAL DISSERTATIONS

PB - Aalto University

ER -

ID: 18348532