Understanding Electromigration in Cu-CNT Composite Interconnects: A Multiscale Electrothermal Simulation Study
Research output: Contribution to journal › Article › Scientific › peer-review
Researchers
Research units
- University of Glasgow
- Fraunhofer Center for Nanoelectronic Technologies
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier
- CNRS/IN2P3
- AIXTRON Ltd.
Abstract
In this paper, we report a hierarchical simulation study of the electromigration (EM) problem in Cu-carbon nanotube (CNT) composite interconnects. This paper is based on the investigation of the activation energy and self-heating temperature using a multiscale electrothermal simulation framework. We first investigate the electrical and thermal properties of Cu-CNT composites, including contact resistances, using the density functional theory and reactive force field approaches, respectively. The corresponding results are employed in macroscopic electrothermal simulations taking into account the self-heating phenomenon. Our simulations show that although Cu atoms have similar activation energies in both bulk Cu and Cu-CNT composites, Cu-CNT composite interconnects are more resistant to EM thanks to the large Lorenz number of the CNTs. Moreover, we found that a large and homogenous conductivity along the transport direction in interconnects is one of the most important design rules to minimize the EM.
Details
Original language | English |
---|---|
Pages (from-to) | 3884-3892 |
Journal | IEEE Transactions on Electron Devices |
Volume | 65 |
Issue number | 9 |
Publication status | Published - 2018 |
MoE publication type | A1 Journal article-refereed |
- Conductivity, Contacts, Cu-carbon nanotubes (CNT) composites, density functional theory (DFT), Discrete Fourier transforms, Electromigration, electromigration (EM), electrothermal, interconnects, Lattices, multiscale simulation, Resistance, self-heating., Thermal conductivity
Research areas
Download statistics
ID: 27166847