Projects per year
Abstract
A key challenge in the development of materials for applications in the fields of opto- and nanoelectronics, catalysis, separation, and energy conversion is the ability to fabricate 3D inorganic semiconductive nanostructures in a precisely-controlled and cost-effective manner. This work describes the fabrication of 3D nanostructured TiO2 monoliths by coating ultraporous cross-linked cellulose nanocrystal (CNC) aerogel templates with TiO2 layers of controlled thickness via atomic layer deposition (ALD). Following calcination, the resulting hollow inorganic ultraporous 3D networks form the thinnest self-supporting semiconductive structure (7 nm) fabricated directly on a conductive substrate. The CNC-templated ALD–TiO2 electrodes are applied toward photoelectrochemical water splitting. The results show that a TiO2 coating as thin as 15 nm produces a maximum water splitting efficiency, resulting in materials savings and reduced fabrication time.
Original language | English |
---|---|
Article number | 2001181 |
Number of pages | 6 |
Journal | Advanced Materials Interfaces |
Volume | 8 |
Issue number | 11 |
Early online date | 7 May 2021 |
DOIs | |
Publication status | Published - 9 Jun 2021 |
MoE publication type | A1 Journal article-refereed |
Keywords
- 3D network structure
- atomic layer deposition
- nanocellulose
- templating
- water splitting
Fingerprint
Dive into the research topics of 'Ultrathin-Walled 3D Inorganic Nanostructured Networks Templated from Cross-Linked Cellulose Nanocrystal Aerogels'. Together they form a unique fingerprint.Projects
- 1 Finished
-
PREIN: Photonics Research and Innovation
Mäkelä, K. (Principal investigator)
01/01/2019 → 31/12/2022
Project: Academy of Finland: Other research funding