Projects per year
Abstract
Superhydrophobic surfaces (SHS) exhibit a pronounced ability to resist wetting. When immersed in water, water does not penetrate between the microstructures of the SHS. Instead, a thin layer of trapped gas remains, i.e., plastron. This fractional wetting is also known as the Cassie–Baxter state (CB). Impairment of superhydrophobicity occurs when water penetrates the plastron and, when complete wetting is achieved, a Wenzel state (W) results. Subsequent recovery back to CB state is one of the main challenges in the field of SHS wetting. Current methods for plastron recovery require complex mechanical or chemical integration, are time-consuming or lack spatial control. Here an on-demand, contact-less approach for performing facile transitions between these wetting states at micrometer length scales is proposed. This is achieved by the use of acoustic radiation force (ARF) produced by high-intensity focused ultrasound (HIFU). Switching from CB to W state takes <100 µs, while the local recovery back to CB state takes <45 s. To the best of authors knowledge, this is the first demonstration of ARF-induced manipulation of the plastron enabling facile two-way controlled switching of wetting states.
Original language | English |
---|---|
Article number | 2403028 |
Number of pages | 8 |
Journal | Advanced Science |
DOIs | |
Publication status | E-pub ahead of print - 1 Jul 2024 |
MoE publication type | A1 Journal article-refereed |
Keywords
- acoustic radiation force
- bubble
- plastron
- superhydrophobic surfaces
- ultrasound
Fingerprint
Dive into the research topics of 'Ultrasonic Healing of Plastrons'. Together they form a unique fingerprint.Projects
- 5 Active
-
Wong William: Enhanced Electrocatalysis via the Plastron Effect
Wong, W., Koochak, P. & Alikhanifaradonbeh, R.
01/09/2022 → 31/08/2025
Project: Academy of Finland: Other research funding
-
-
-: Center of Excellence in Life-inspired Hybrid Materials
Ras, R., Vuckovac, M., Liu, K., Zhou, S., Al-Terke, H., Junaid, M., Nurmi, H., Morais Jaques, Y. & Huhtamäki, T.
01/01/2022 → 31/12/2024
Project: Academy of Finland: Other research funding