Ubiquity of non-diffusive momentum transport in JET H-modes

H. Weisen*, Y Camenen, A. Salmi, T.W. Versloot, P.C. deVries, M. Maslov, T. Tala, M. Beurskens, C. Giroud

*Corresponding author for this work

Research output: Contribution to journalReview Articlepeer-review

12 Citations (Scopus)

Abstract

A broad survey of the experimental database of neutral beam heated baseline H-modes and hybrid scenarios in the JET tokamak has established the ubiquity of non-diffusive momentum transport mechanisms in rotating plasmas. As a result of their presence, the normalized angular frequency gradient Rω/ω is higher than expected from momentum diffusion alone, by about unity in the core (r/a0.3), rising to near 5 close to the edge, where its contribution to the total gradient is comparable to the gradient associated with the diffusive flux. The magnitude and parameter dependences of the non-diffusive contribution to the gradient are consistent with a theoretically expected pinch, which has its origin in the vertical particle drift resulting from the Coriolis force. Linear gyrokinetic calculations of the pinch number RV/χ and the Prandtl number χ/χ i are in good agreement with the experimental observations, with similar dependences on R/L n, q and ε=r/R. A contribution due to residual stresses may also be present, but could not be identified with certainty.

Original languageEnglish
Article number114024
JournalNuclear Fusion
Volume52
Issue number11
DOIs
Publication statusPublished - Nov 2012
MoE publication typeA2 Review article in a scientific journal

Fingerprint Dive into the research topics of 'Ubiquity of non-diffusive momentum transport in JET H-modes'. Together they form a unique fingerprint.

Cite this