Type-III and IV interacting Weyl points

J. Nissinen*, G. E. Volovik

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

37 Citations (Scopus)
130 Downloads (Pure)

Abstract

3+1-dimensional Weyl fermions in interacting systems are described by effective quasi-relativistic Green’s functions parametrized by a 16 element matrix eα μin an expansion around the Weyl point. The matrix eα μcan be naturally identified as an effective tetrad field for the fermions. The correspondence between the tetrad field and an effective quasi-relativistic metric gμν governing the Weyl fermions allows for the possibility to simulate different classes of metric fields emerging in general relativity in interacting Weyl semimetals. According to this correspondence, there can be four types of Weyl fermions, depending on the signs of the components g00 and g00 of the effective metric. In addition to the conventional type-I fermions with a tilted Weyl cone and type-II fermions with an overtilted Weyl cone for g00 > 0 and respectively g00 > 0 or g00 < 0, we find additional “type-III” and “type-IV” Weyl fermions with instabilities (complex frequencies) for g00 < 0 and g00 > 0 or g00 < 0, respectively. While the type-I and type-II Weyl points allow us to simulate the black hole event horizon at an interface where g00 changes sign, the type-III Weyl point leads to effective spacetimes with closed timelike curves.

Original languageEnglish
Pages (from-to)447–452
Number of pages6
JournalJETP Letters
Volume105
Issue number7
DOIs
Publication statusPublished - 2017
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Type-III and IV interacting Weyl points'. Together they form a unique fingerprint.

Cite this