Tunable and Magnetic Thiol-ene Micropillar Arrays

Research output: Contribution to journalArticleScientificpeer-review

12 Citations (Scopus)
45 Downloads (Pure)


Tunable and responsive surfaces offer routes to multiple functionalities ranging from superhydrophobic surfaces to controlled adhesion. Inspired by cilia structure in the respiratory pathway, magnetically responsive periodic arrays of flexible and magnetic thiol–ene micropillars are fabricated. Omnidirectional collective bending of the pillar array in magnetic field is shown. Local non‐contact actuation of a single pillar is achieved using an electromagnetic needle to probe the responsiveness and the elastic properties of the pillars by comparing the effect of thiol–ene crosslinking density to pillar bending. The suitable thiol–ene components for flexible and stiff magnetic micropillars and the workable range of thiol‐to‐allyl ratio are identified. The wettability of the magnetic pillars can be tailored by chemical and topography modification of the pillar surface. Low‐surface‐energy self‐assembled monolayers are grafted by UV‐assisted surface activation, which is also used for surface topography modification by covalent bonding of micro‐ and nanoparticles to the pillar surface. The modified thiol–ene micopillars are resistant to capillarity‐driven collapse and they exhibit low contact angle hysteresis, allowing water droplet motion driven by repeated bending and recovery of the magnetic pillars in an external magnetic field. Transport of polyethylene microspheres is also demonstrated.
Original languageEnglish
Article number1900522
Pages (from-to)1-6
Number of pages6
JournalMacromolecular Rapid Communications
Issue number2
Early online date28 Nov 2019
Publication statusPublished - Jan 2020
MoE publication typeA1 Journal article-refereed


  • microdroplet transport
  • micromanipulation
  • Self-assembly
  • superhydrophobicity
  • thiol-ene elastomer


Dive into the research topics of 'Tunable and Magnetic Thiol-ene Micropillar Arrays'. Together they form a unique fingerprint.

Cite this