Transparent and Freestanding Single-Walled Carbon Nanotube Films Synthesized Directly and Continuously via a Blown Aerosol Technique

Qiang Zhang, Weiya Zhou*, Xiaogang Xia, Kewei Li, Nan Zhang, Yanchun Wang, Zhuojian Xiao, Qingxia Fan, Esko I. Kauppinen, Sishen Xie

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)

Abstract

Single-walled carbon nanotube (SWCNT) films are promising materials as flexible transparent conductive films (TCFs). Here, inspired by the extrusion blown plastic film technique and the SWCNT synthesis approach by floating catalyst chemical vapor deposition (FCCVD), a novel blown aerosol chemical vapor deposition (BACVD) method is reported to directly and continuously produce freestanding SWCNT TCFs at several hundred meters per hour. The synthesis mechanism, involving blowing a stable aerosol bubble and transforming the bubble into an aerogel, is investigated, and a general phase diagram is established for this method. For the SWCNT TCFs via BACVD, both carbon conversion efficiency and SWCNT TCF yield can reach three orders of magnitude higher than those with the conventional FCCVD. The film displays a sheet resistance of 40 ohm sq−1 at 90% transmittance after being doped, representing the record performance based on large-scale SWCNT films. Transparent, flexible, and stretchable electrodes based on BACVD films are demonstrated. Moreover, this high-throughput method of producing SWCNT TCFs can be compatible with the roll-to-roll process for mass production of flexible displays, touch screens, solar cells, and solid-state lighting, and is expected to have a broad and long-term impact on many fields from consumer electronics to energy conversion and generation.

Original languageEnglish
Article number2004277
Number of pages8
JournalAdvanced Materials
Volume32
Issue number39
Early online date1 Jan 2020
DOIs
Publication statusPublished - Oct 2020
MoE publication typeA1 Journal article-refereed

Keywords

  • blown aerosol technique
  • carbon nanotubes
  • high yield
  • roll-to-roll
  • transparent conductive films

Fingerprint Dive into the research topics of 'Transparent and Freestanding Single-Walled Carbon Nanotube Films Synthesized Directly and Continuously via a Blown Aerosol Technique'. Together they form a unique fingerprint.

Cite this