Transparent and conductive hybrid graphene/carbon nanotube films

Alexandra L. Gorkina, Alexey P. Tsapenko, Evgenia P. Gilshteyn, Tatiana S. Koltsova, Tatiana V. Larionova, Alexander Talyzin, Anton S. Anisimov, Ilya V. Anoshkin, Esko I. Kauppinen, Oleg V. Tolochko, Albert G. Nasibulin*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

86 Citations (Scopus)

Abstract

Carbon nanomaterials (carbon nanotubes (CNTs) and graphene) are promising materials for optoelectronic applications, including flexible transparent and conductive films (TCFs) due to their extraordinary electrical, optical and mechanical properties. However, the performance of CNT- or graphene-only TCFs still needs to be improved. One way to enhance the optoelectrical properties of TCFs is to hybridize CNTs and graphene. This approach leads to creation of a novel material that exhibits better properties than its individual constituents. In this work, the novel hybrid CNT-graphene nanomaterial was fabricated by graphene oxide deposition on top of CNT films. The graphene oxide was then reduced by thermal annealing at ambient atmosphere or in H2 atmosphere. At the final step the CNT-graphene hybrids were chemically doped using gold(III) chloride. As a result, we show that the hybrids demonstrate excellent optoelectrical performance with the sheet resistance as low as 73 Ω/□ at 90% transmittance.

Original languageEnglish
Pages (from-to)501-507
Number of pages7
JournalCarbon
Volume100
DOIs
Publication statusPublished - 1 Apr 2016
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Transparent and conductive hybrid graphene/carbon nanotube films'. Together they form a unique fingerprint.

Cite this