Projects per year
Abstract
Metasurfaces, the ultrathin, 2D version of metamaterials, have recently attracted a surge of attention for their capability to manipulate electromagnetic waves. Recent advances in reconfigurable and programmable metasurfaces have greatly extended their scope and reach into practical applications. Such functional sheet materials can have enormous impact on imaging, communication, and sensing applications, serving as artificial skins that shape electromagnetic fields. Motivated by these opportunities, this progress report provides a review of the recent advances in tunable and reconfigurable metasurfaces, highlighting the current challenges and outlining directions for future research. To better trace the historical evolution of tunable metasurfaces, a classification into globally and locally tunable metasurfaces is first provided along with the different physical addressing mechanisms utilized. Subsequently, coding metasurfaces, a particular class of locally tunable metasurfaces in which each unit cell can acquire discrete response states, is surveyed, since it is naturally suited to programmatic control. Finally, a new research direction of software-defined metasurfaces is described, which attempts to push metasurfaces toward unprecedented levels of functionality by harnessing the opportunities offered by their software interface as well as their inter- and intranetwork connectivity and establish them in real-world applications.
Original language | English |
---|---|
Article number | 2000783 |
Number of pages | 18 |
Journal | ADVANCED OPTICAL MATERIALS |
Volume | 8 |
Issue number | 17 |
Early online date | 1 Jan 2020 |
DOIs | |
Publication status | Published - 1 Sept 2020 |
MoE publication type | A2 Review article, Literature review, Systematic review |
Keywords
- electromagnetic wave control
- functional sheet materials
- metasurfaces
- programmable
- reconfigurable
- software-defined metasurfaces
- tunable
Fingerprint
Dive into the research topics of 'Toward Intelligent Metasurfaces: The Progress from Globally Tunable Metasurfaces to Software-Defined Metasurfaces with an Embedded Network of Controllers'. Together they form a unique fingerprint.Projects
- 1 Finished
-
VISORSURF: A Hardware Platform for Software-driven Functional Metasurfaces
Tretiakov, S. (Principal investigator), Asadchy, V. (Project Member), Liu, F. (Project Member), Cuesta Soto, F. (Project Member), Ptitcyn, G. (Project Member), Wang, X. (Project Member), Mirmoosa, M. (Project Member), Jayathurathnage, P. (Project Member) & Tzarouchis, D. (Project Member)
01/01/2017 → 31/12/2020
Project: EU: Framework programmes funding