TY - JOUR
T1 - Three different approaches for the clarification of the interactions between lipoproteins and chondroitin-6-sulfate
AU - Lipponen, Katriina
AU - Stege, Patricia W.
AU - Cilpa, Geraldine
AU - Samuelsson, Jörgen
AU - Fornstedt, Torgny
AU - Riekkola, Marja-Liisa
PY - 2011/8/1
Y1 - 2011/8/1
N2 - Two different experimental approaches were used for obtaining a comprehensive view and understanding of the interactions between apolipoprotein B-100 (ApoB-100) of low-density lipoprotein and apolipoprotein E (ApoE) of high-density lipoprotein and chondroitin-6-sulfate (C6S) of arterial proteoglycan. The techniques employed were partial filling affinity capillary electrophoresis (PF-ACE) and continuous flow quartz crystal microbalance (QCM). In addition, molecular dynamic (MD) simulations were used to provide a supportive visual insight into the interaction mechanism. A new tool for analysis of QCM-data was utilized, i.e., adsorption energy distribution calculations, which allowed a deeper understanding of the interactions, especially at different temperatures. The PF-ACE technique probed mainly the strong adsorption interactions whereas in the MD calculations short-and long-range interactions could be distinguished. Although there are differences in the techniques, a pretty good agreement was achieved between the three approaches for the interaction of 19 amino acid peptide of ApoB with C6S giving log affinity constants of 4.66 by QCM, 5.02 by PF-ACE, and 7.39 by MD, and for 15 amino acid peptide of ApoE with C6S 5.34 by QCM, 5.28 by PT-ACE, and 4.60 by MD at physiological temperature 37.0 °C.
AB - Two different experimental approaches were used for obtaining a comprehensive view and understanding of the interactions between apolipoprotein B-100 (ApoB-100) of low-density lipoprotein and apolipoprotein E (ApoE) of high-density lipoprotein and chondroitin-6-sulfate (C6S) of arterial proteoglycan. The techniques employed were partial filling affinity capillary electrophoresis (PF-ACE) and continuous flow quartz crystal microbalance (QCM). In addition, molecular dynamic (MD) simulations were used to provide a supportive visual insight into the interaction mechanism. A new tool for analysis of QCM-data was utilized, i.e., adsorption energy distribution calculations, which allowed a deeper understanding of the interactions, especially at different temperatures. The PF-ACE technique probed mainly the strong adsorption interactions whereas in the MD calculations short-and long-range interactions could be distinguished. Although there are differences in the techniques, a pretty good agreement was achieved between the three approaches for the interaction of 19 amino acid peptide of ApoB with C6S giving log affinity constants of 4.66 by QCM, 5.02 by PF-ACE, and 7.39 by MD, and for 15 amino acid peptide of ApoE with C6S 5.34 by QCM, 5.28 by PT-ACE, and 4.60 by MD at physiological temperature 37.0 °C.
UR - http://www.scopus.com/inward/record.url?scp=79960990124&partnerID=8YFLogxK
U2 - 10.1021/ac201110c
DO - 10.1021/ac201110c
M3 - Article
C2 - 21651232
AN - SCOPUS:79960990124
VL - 83
SP - 6040
EP - 6046
JO - Analytical Chemistry
JF - Analytical Chemistry
SN - 0003-2700
IS - 15
ER -